Parasympathetic regulation of heart rate in rats after 5/6 nephrectomy is impaired despite functionally intact cardiac vagal innervation.
نویسندگان
چکیده
BACKGROUND Chronic renal failure is frequently associated with a high risk of sudden cardiac death due to dysfunction of the autonomic nervous system. The pathogenic mechanisms underlying the parasympathetic cardiac dysautonomia are not fully elucidated yet. METHODS Chronic renal failure was induced in rats by 5/6 nephrectomy. Blood pressure, resting heart rate and plasma levels of creatinine, urea and asymmetric dimethylarginine (ADMA) were measured. To characterize the parasympathetic innervation of the heart, chronotropic responses to atropine, metipranolol and to vagal stimulation in the absence or presence of ADMA were investigated in vivo. In vitro, chronotropic and inotropic effects of carbachol and ADMA and mRNA expression of muscarinic M2 receptors, high affinity choline transporter (CHT1), vesicular acetylcholine transporter (VAChT) and choline acetyltransferase (ChAT) were assessed in the isolated cardiac tissues. RESULTS In 5/6 nephrectomy rats, the resting heart rate was significantly higher and the parasympathetic tone, measured as the effect of atropine after administration of metipranolol was significantly lower than in control animals. Plasma ADMA levels were significantly elevated in the uraemic rats and significantly inversely correlated with the effect of atropine on the heart rate. No differences were revealed in the plasma norepinephrine concentrations, negative chronotropic responses to stimulation of the vagus nerves, chronotropic and inotropic responses to carbachol and the relative expression of M2 receptors, CHT1, VAChT and ChAT. CONCLUSION The data suggest that cardioacceleration in chronic renal failure is caused by a diminished cardiac parasympathetic tone in the presence of a functionally intact intrinsic cardiac cholinergic signalling system.
منابع مشابه
Progress in the study of vagal control of cardiac ventricles.
Autonomic nervous system plays an important role in the regulation of mammalian heart, and it is divided into the sympathetic and parasympathetic (vagal) subsystems. The parasympathetic (vagal) control of the atria involves modulation of chronotropic, dromotropic and inotropic activities, but the role of the parasympathetic innervation of the ventricles is still unclear. There is a common misco...
متن کاملStructural remodeling of the heart and its premotor cardioinhibitory vagal neurons following T(5) spinal cord transection.
Midthoracic spinal cord injury (SCI) is associated with enhanced cardiac sympathetic activity and reduced cardiac parasympathetic activity. The enhanced cardiac sympathetic activity is associated with sympathetic structural plasticity within the stellate ganglia, spinal cord segments T1-T4, and heart. However, changes to cardiac parasympathetic centers rostral to an experimental SCI are relativ...
متن کاملPerinatal sulfur dioxide exposure alters brainstem parasympathetic control of heart rate.
AIMS Sulfur dioxide (SO₂) is an air pollutant that impedes neonatal development and induces adverse cardiorespiratory health effects, including tachycardia. Here, an animal model was developed that enabled characterization of (i) in vivo alterations in heart rate and (ii) altered activity in brainstem neurons that control heart rate after perinatal SO₂ exposure. METHODS AND RESULTS Pregnant S...
متن کاملEffect of acute volume loading on heart rate in the conscious dog.
The effect on heart rate of rapid elevation of ventricular filling pressure by intravenous infusion of isotonic solution was studied in 31 conscious dogs with autonomic innervation intact and during vagal, beta-receptor, or combined vagal and beta-receptor blockade. When parasympathetic innervation was intact, heart rate always rose during infusion and there was a consistent relationship betwee...
متن کاملOrigins of the vagal drive controlling left ventricular contractility
KEY POINTS The strength, functional significance and origins of parasympathetic innervation of the left ventricle remain controversial. This study tested the hypothesis that parasympathetic control of left ventricular contractility is provided by vagal preganglionic neurones of the dorsal motor nucleus (DVMN). Under β-adrenoceptor blockade combined with spinal cord (C1) transection (to remove s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association
دوره 24 8 شماره
صفحات -
تاریخ انتشار 2009